Our New CPU Testing Suite for 2018 and 2019

Spectre and Meltdown Hardened

In order to keep up to date with our testing, we have to update our software every so often to stay relevant. In our updates we typically implement the latest operating system, the latest patches, the latest software revisions, the newest graphics drivers, as well as add new tests or remove old ones. As regular readers will know, our CPU testing revolves an automated test suite, and depending on how the newest software works, the suite either needs to change, be updated, have tests removed, or be rewritten completely. Last time we did a full re-write, it took the best part of a month, including regression testing (testing older processors).

One of the key elements of our testing update for 2018 (and 2019) is the fact that our scripts and systems are designed to be hardened for Spectre and Meltdown. This means making sure that all of our BIOSes are updated with the latest microcode, and all the steps are in place with our operating system with updates. In this case we are using Windows 10 x64 Enterprise 1709 with April security updates which enforces Smeltdown (our combined name) mitigations. Uses might ask why we are not running Windows 10 x64 RS4, the latest major update that doesn't delete your data – this is due to some new features which are giving uneven results. Rather than spend a few weeks learning to disable them, we’re going ahead with RS3 which has been widely used.

Our previous benchmark suite was split into several segments depending on how the test is usually perceived. Our new test suite follows similar lines, and we run the tests based on:

  • Power
  • Memory
  • Office
  • System
  • Render
  • Encoding
  • Web
  • Legacy
  • Integrated Gaming
  • CPU Gaming

Depending on the focus of the review, the order of these benchmarks might change, or some left out of the main review. All of our data will reside in our online benchmark database, Bench, for which there is a new ‘CPU 2019’ section for all of our new tests.

Within each section, we will have the following tests:

Power

Our power tests consist of running a substantial workload for every thread in the system, and then probing the power registers on the chip to find out details such as core power, package power, DRAM power, IO power, and per-core power. This all depends on how much information is given by the manufacturer of the chip: sometimes a lot, sometimes not at all.

We are currently running POV-Ray as our main test for Power, as it seems to hit deep into the system and is very consistent. In order to limit the number of cores for power, we use an affinity mask driven from the command line.

Memory

These tests involve disabling all turbo modes in the system, forcing it to run at base frequency, and them implementing both a memory latency checker (Intel’s Memory Latency Checker works equally well for both platforms) and AIDA64 to probe cache bandwidth.

Office

  • Chromium Compile: Windows VC++ Compile of Chrome 56 (same as 2017)
  • PCMark10: Primary data will be the overview results – subtest results will be in Bench
  • 3DMark Physics: We test every physics sub-test for Bench, and report the major ones (new)
  • GeekBench4: By request (new)
  • SYSmark 2018: Recently released by BAPCo, currently automating it into our suite (new, when feasible)

System

  • Application Load: Time to load GIMP 2.10.4 (new)
  • FCAT: Time to process a 90 second ROTR 1440p recording (same as 2017)
  • 3D Particle Movement: Particle distribution test (same as 2017) – we also have AVX2 and AVX512 versions of this, which may be added later
  • Dolphin 5.0: Console emulation test (same as 2017)
  • DigiCortex: Sea Slug Brain simulation (same as 2017)
  • y-Cruncher v0.7.6: Pi calculation with optimized instruction sets for new CPUs (new)
  • Agisoft Photoscan 1.3.3: 2D image to 3D modelling tool (updated)

Render

  • Corona 1.3: Performance renderer for 3dsMax, Cinema4D (same as 2017)
  • Blender 2.79b: Render of bmw27 on CPU (updated to 2.79b)
  • LuxMark v3.1 C++ and OpenCL: Test of different rendering code paths (same as 2017)
  • POV-Ray 3.7.1: Built-in benchmark (updated)
  • CineBench R15: Older Cinema4D test, will likely remain in Bench (same as 2017)

Encoding

  • 7-zip 1805: Built-in benchmark (updated to v1805)
  • WinRAR 5.60b3: Compression test of directory with video and web files (updated to 5.60b3)
  • AES Encryption: In-memory AES performance. Slightly older test. (same as 2017)
  • Handbrake 1.1.0: Logitech C920 1080p60 input file, transcoded into three formats for streaming/storage:
    • 720p60, x264, 6000 kbps CBR, Fast, High Profile
    • 1080p60, x264, 3500 kbps CBR, Faster, Main Profile
    • 1080p60, HEVC, 3500 kbps VBR, Fast, 2-Pass Main Profile

Web

  • WebXPRT3: The latest WebXPRT test (updated)
  • WebXPRT15: Similar to 3, but slightly older. (same as 2017)
  • Speedometer2: Javascript Framework test (new)
  • Google Octane 2.0: Depreciated but popular web test (same as 2017)
  • Mozilla Kraken 1.1: Depreciated but popular web test (same as 2017)

Legacy (same as 2017)

  • 3DPM v1: Older version of 3DPM, very naïve code
  • x264 HD 3.0: Older transcode benchmark
  • Cinebench R11.5 and R10: Representative of different coding methodologies

Linux (when feasible)

When in full swing, we wish to return to running LinuxBench 1.0. This was in our 2016 test, but was ditched in 2017 as it added an extra complication layer to our automation. By popular request, we are going to run it again.

Integrated and CPU Gaming

We have recently automated around a dozen games at four different performance levels. A good number of games will have frame time data, however due to automation complications, some will not. The idea is that we get a good overview of a number of different genres and engines for testing. So far we have the following games automated:

AnandTech CPU Gaming 2019 Game List
Game Genre Release Date API IGP Low Med High
World of Tanks enCore Driving / Action Feb
2018
DX11 768p
Minimum
1080p
Medium
1080p
Ultra
4K
Ultra
Final Fantasy XV JRPG Mar
2018
DX11 720p
Standard
1080p
Standard
4K
Standard
8K
Standard
Shadow of War Action / RPG Sep
2017
DX11 720p
Ultra
1080p
Ultra
4K
High
8K
High
F1 2018 Racing Aug
2018
DX11 720p
Low
1080p
Med
4K
High
4K
Ultra
Civilization VI RTS Oct
2016
DX12 1080p
Ultra
4K
Ultra
8K
Ultra
16K
Low
Ashes: Classic RTS Mar
2016
DX12 720p
Standard
1080p
Standard
1440p
Standard
4K
Standard
Strange Brigade* FPS Aug
2018
DX12
Vulkan
720p
Low
1080p
Medium
1440p
High
4K
Ultra
Shadow of the Tomb Raider Action Sep
2018
DX12 720p
Low
1080p
Medium
1440p
High
4K
Highest
Grand Theft Auto V Open World Apr
2015
DX11 720p
Low
1080p
High
1440p
Very High
4K
Ultra
Far Cry 5 FPS Mar
2018
DX11 720p
Low
1080p
Normal
1440p
High
4K
Ultra
*Strange Brigade is run in DX12 and Vulkan modes

For our CPU Gaming tests, we will be running on an NVIDIA GTX 1080. For the pure CPU benchmarks, we use an RX460 as we now have several units for concurrent testing.

In previous years we tested multiple GPUs on a small number of games – this time around, due to a Twitter poll I did which turned out exactly 50:50, we are doing it the other way around: more games, fewer GPUs.

Scale Up vs Scale Out: Benefits of Automation

One comment we get every now and again is that automation isn’t the best way of testing – there’s a higher barrier to entry, and it limits the tests that can be done. From our perspective, despite taking a little while to program properly (and get it right), automation means we can do several things:

  1. Guarantee consistent breaks between tests for cooldown to occur, rather than variable cooldown times based on ‘if I’m looking at the screen’
  2. It allows us to simultaneously test several systems at once. I currently run five systems in my office (limited by the number of 4K monitors, and space) which means we can process more hardware at the same time
  3. We can leave tests to run overnight, very useful for a deadline
  4. With a good enough script, tests can be added very easily

Our benchmark suite collates all the results and spits out data as the tests are running to a central storage platform, which I can probe mid-run to update data as it comes through. This also acts as a mental check in case any of the data might be abnormal.

We do have one major limitation, and that rests on the side of our gaming tests. We are running multiple tests through one Steam account, some of which (like GTA) are online only. As Steam only lets one system play on an account at once, our gaming script probes Steam’s own APIs to determine if we are ‘online’ or not, and to run offline tests until the account is free to be logged in on that system. Depending on the number of games we test that absolutely require online mode, it can be a bit of a bottleneck.

Benchmark Suite Updates

As always, we do take benchmark requests. It helps us understand the workloads that everyone is running and plan accordingly.

A side note on software packages: we have had requests for tests on software such as ANSYS, or other professional grade software. The downside of testing this software is licensing and scale. Most of these companies do not particularly care about us running tests, and state it’s not part of their goals. Others, like Agisoft, are more than willing to help. If you are involved in these software packages, the best way to see us benchmark them is to reach out. We have special versions of software for some of our tests, and if we can get something that works, and relevant to the audience, then we shouldn’t have too much difficulty adding it to the suite.

Test Bed and Setup CPU Performance: System Tests
Comments Locked

274 Comments

View All Comments

  • eastcoast_pete - Sunday, October 21, 2018 - link

    Yes; unfortunately, that's a major exception, and annoying to somebody like me who'd actually recommend AMD otherwise. I really hope that AMD improves it's AVX/AVX2 implementation and makes it truly 256 bit wide. If I remember correctly, the lag of Ryzen chips in 256 bit AVX vs. Intel is due to AMD using a 2 x 128 bit implementation (workaround, really), which is just nowhere near as fast as real 256 bit AVX. So, I hope that AMD gives their next Ryzen generation full 256 bit AVX, not the 2 x 128 bit workaround.
  • mapesdhs - Sunday, October 21, 2018 - link

    It's actually worse than that with pro apps. Even if AMD hugely improved their AVX, it won't help as much as it could so long as apps like Premiere remain so poorly coded. AE even has plugins that are still single-threaded from more than a decade ago. There are also several CAD apps that only use a single core. I once sold a 5GHz 2700K system to an engineering company for use with Majix, it absolutely blew the socks off their far more expensive XEON system (another largely single-threaded app, though not entirely IIRC).

    Makes me wonder what they're teaching sw engineering students these days; parallel coding and design concepts (hw and sw) was a large part of the comp sci stuff I did 25 years ago. Has it fallen out of favour because there aren't skilled lectures to teach it? Or students don't like tackling the hard stuff? Bot of both? Some of it was certainly difficult to grasp at first, but even back then there was a lot of emphasis on multi-threaded systems, or systems that consisted of multiple separate functional units governed by some kind of management engine (not unlike a modern game I suppose), at the time coding emphasis being on derivatives of C++. It's bizarre that after so long, Premiere inparticular is still so inefficient, ditto AE. One wonders if companies like Adobe simply rely on improving hw trends to provide customers with performance gains, instead of improving the code, though this would fly in the face of their claim a couple of years ago that they would spend a whole year focusing on improving performance since that's what users wanted more than anything else (I remember the survey results being discussed on creativcow).
  • eastcoast_pete - Sunday, October 21, 2018 - link

    Fully agree! Part of the problem is that the re-coding single-thread routines that could really benefit from parallel/multi-thread execution costs the Adobes of this world money, especially if one wants it done right. However, I believe that the biggest reason why so many programs, in full or in part, are solidly stuck in the last century is that their customers simply don't know what they are missing out on. Once volume licensees start asking their software supplier's sales engineers (i.e. sales people) "Yes, nice new interface. But, does this version now fully support multithreaded execution, and, if not, why not?", Adobe and others will give this the priority it should have had all along.
  • repoman27 - Friday, October 19, 2018 - link

    USB Type-C ports don't necessarily require a re-timer or re-driver (especially if they’re only using Gen 1 5 Gbit/s signaling), but they do require a USB Type-C Port Controller.

    The function of that chip is rather different though. Its job is to utilize the CC pins to perform device attach / detach detection, plug orientation detection, establish the initial power and data roles, and advertise available USB Type-C current levels. The port controller also generally includes a high-speed mux to steer the SuperSpeed signals to whichever pins are being used depending on the plug orientation. Referring to a USB Type-C Port Controller as a re-driver is both inaccurate and confusing to readers.
  • willis936 - Friday, October 19, 2018 - link

    Holy damn that's a lot of juice. 220W? That's 60 watts more than a 14x3GHz core IVB E5.

    They had better top charts with that kind of power draw. I have serious reservations about believing two DDR4 memory channels is enough to feed 8x5GHz cores. I would be interested in a study of memory scaling on this chip specifically, since it's the corner case for the question "Is two memory channels enough in 2018?".
  • DominionSeraph - Friday, October 19, 2018 - link

    This chip would be faster in everything than a 14 core IVB E5, while being over 50% faster in single-threaded tasks.
    Also, Intel is VERY generous with voltage in turbo. Note the 9700K at stock takes 156W in Blender for a time of 305, but when they dialed it in at 1.025V at 4.6GHz it took 87W for an improved time of 301, and they don't hit the stock wattage until they've hit 5.2GHz. When they get the 9900K scores up I expect that 220W number to be cut nearly in half by a proper voltage setting.
  • 3dGfx - Friday, October 19, 2018 - link

    How can you claim 9900k is the best when you never tested the HEDT parts in gaming? Making such claims really makes anandtech look bad. I hope you fix this oversight so skyX can be compared properly to 9900K and the skyX refresh parts!!! -- There was supposed to be a part2 to the i9-7980XE review and it never happened, so gaming benchmarks were never done, and i9-7940X and i9-7920X weren't tested either. HEDT is a gaming platform since it has no ECC support and isn't marketed as a workstation platform. Curious that intel says the 8-core part is now "the best" and you just go along with that without testing their flagship HEDT in games.
  • DannyH246 - Friday, October 19, 2018 - link

    If you want an unbiased review go here...

    https://www.extremetech.com/computing/279165-intel...

    Anandtech is a joke. Has been for years. Everyone knows it.
  • TEAMSWITCHER - Friday, October 19, 2018 - link

    Thanks... but no thanks. Why did you even come here? Just to post this? WEAK!
  • Arbie - Friday, October 19, 2018 - link

    What a stupid remark. And BTW Extremetech's conclusion is practically the same as AT's. The bias here is yours.

Log in

Don't have an account? Sign up now