Way back at CES we saw our first glimpse of MSM8x60 and Qualcomm's Snapdragon Mobile Development Platform (MDP) with an MSM8660 SoC inside. Though we couldn't run any benchmarks on it, we got a sneak preview of dual core snapdragon. This year at MWC Qualcomm gave us a considerable amount of hands-on time with the same MDP hardware. We did a bit of testing, and then Qualcomm did something awesome - they let us take an MDP with the MSM8660 inside home with us.

In case you haven't been following, MSM8x60 is Qualcomm's first dual-core SoC. It's two Scorpion cores, an Adreno 220 GPU, and cellular modem all built on the 45 nm process. Like the rest of Qualcomm's lineup, the x in MSM8x60 can either be a 2, denoting GSM, UMTS, and HSPA+ support, or a 6, denoting all the same thing but with CDMA2000 and EVDO. Similarly, 9 will connote LTE support when we get to that point as well. MSM8x60 comes clocked at either 1.2 GHz or a higher 1.5 GHz. The MDP we were given was the higher 1.5 GHz variant. The MSM8x60 is the successor to MSM8x55, which is single core 1 GHz Snapdragon and Adreno 205, also built on 45 nm process. 

Qualcomm Mobile Development Platform (MDP)
SoC 1.5 GHz 45nm MSM8660
CPU Dual Core Snapdragon
GPU Adreno 220
RAM (?) LPDDR2
NAND 8 GB integrated, microSD slot
Cameras 13 MP Rear Facing with Autofocus and LED Flash, Front Facing (? MP)
Display 3.8" WVGA LCD-TFT with Capacitive Touch
Battery 3.3 Whr removable
OS Android 2.3.2 (Gingerbread)

It's been a bit busy since we got the MDP home with us, but we've run and re-run tests on the MDP all along and are ready to talk about GPU performance. The MDP we have right now is optimized for evaluating graphics performance, which we'll take a look at in this article. We'll then go into architectural changes between Adreno 200, 205, and 220, and then do the same combo of performance numbers plus architectural deep-dive with the CPU side of things in a future article. 

The MDP itself is stark black and completely utilitiarian - it's a glossy, tall, extremely square package, but a smartphone nonetheless. It runs Android 2.3.2 (as an aside, isn't it ironic that prototype devices are running newer builds of Android than most smartphones you can buy retail right now) and has a number of interesting extras. There's a 13 MP rear facing camera with LED flash, front facing camera, 3.8" WVGA display, speakers, microHDMI port, microUSB, and microSD card slot. The MDP's battery is a comparatively tiny 3.3 Whr, but the entire package is totally mobile. 

The one we have is again optimized for GPU testing, and sadly lacked cellular connectivity or WiFi, but gets the job done nonetheless. 

The MDP's purpose is to act as a pre-commercial handset for software development rather than be something you'd ever carry around. Making reference hardware designed for developers isn't anything new in the SoC space - look no further than OMAP's Blaze platform. Qualcomm started making MDPs with the MSM8655 and sells them through bsquare, who sells them for $995. Though it isn't up yet, both these pages will soon have the MSM8660-based Mobile Development Platform. 

One of the more interesting things about the MDP is that because it's a development platform, not a consumer device sold by an OEM though a carrier, it can either have Vsync enabled or disabled. This is the framerate cap we've seen on virtually every other device, which usually is right around 60 Hz. Through adb, we can turn Vsync on or off on the fly, then reboot Android's surface flinger and run tests. Sadly this procedure, while simple on the MDP, doesn't work on any other devices that aren't running Qualcomm's Android builds.

Since all of the devices we've tested thus far have been commercial, they've shipped with Vsync on and thus are limited to around 60 FPS. Thus, more than a few platforms could have had instantaneous bursts during test runs which are clipped to Vsync. To be fair to those, we've run everything on the MDP with Vsync on and off for illustrative purposes. 

The MDP we tested was running all out, with maximum clocks and no power management thorottling CPU or GPU clocks down based on usage and load. As a result, testing was performed constantly plugged into a beefy USB AC power adapter. Though these benchmarks show off what MSM8660 is capable of, actual performance in shipping devices will obviously be different depending on UI, power management, and display resolution choices made by Qualcomm's OEM customers, like HTC.

GLBenchmark 2.0 - Egypt & Pro Performance
Comments Locked

70 Comments

View All Comments

  • Brian Klug - Wednesday, March 30, 2011 - link

    There's no auto brightness option in the display brightness dialog box, at least on this build. I'm not entirely certain whether it's absent however. Is there some better way to check?

    -Brian
  • Mike1111 - Wednesday, March 30, 2011 - link

    Not true, there is a Motorola Xoom in the first Quadrant Benchmark.
  • Brian Klug - Wednesday, March 30, 2011 - link

    Oops, I had the results correct but didn't regenerate the graph after fixing things. Should be right now.

    -Brian
  • Exelius - Wednesday, March 30, 2011 - link

    It's not really ironic that the prototype is running a newer version of android than most retail phones are. That's kind of the idea of a prototype. Companies have no incentive to update android on their phones after they're released, so that shouldn't come as a shock at all.
  • metafor - Wednesday, March 30, 2011 - link

    A lot of things aren't really ironic.

    Like rain on your wedding day or a free ride that you bought anyway.

    Doesn't stop people from calling it ironic though.
  • nermie - Wednesday, March 30, 2011 - link

    Choosing lines from a song called "Ironic" as an example of things that aren't ironic is pretty ironic.
  • metafor - Thursday, March 31, 2011 - link

    No more ironic than a song called "Ironic" that contains nothing that's ironic.
  • marc1000 - Thursday, March 31, 2011 - link

    this is really a lot of irony... =D
  • metafor - Wednesday, March 30, 2011 - link

    I believe the MDP comes with a plethora of profilers and hardware plugs available to software. One of these measure aggregate power/current and graphs it. It'd be interesting to see how much power the SoC is eating during CPU and/or GPU intensive tests.

    Since other devices don't have these profilers, there wouldn't be much in the way of comparing but having absolute numbers would be interesting in and of itself.
  • efeman - Wednesday, March 30, 2011 - link

    Performance is getting pretty impressive. I still don't see using my phone as a true mobile gaming platform in the near future; the battery life just doesn't cut it when I need the phone for actual phone uses. I wonder if they'll ever drop down smartphone battery drain enough (or develop insanely better batteries) to allow for this kind of usage for extended periods of time.

Log in

Don't have an account? Sign up now