Professional Performance: Windows

Agisoft Photoscan – 2D to 3D Image Manipulation: link

Agisoft Photoscan creates 3D models from 2D images, a process which is very computationally expensive. The algorithm is split into four distinct phases, and different phases of the model reconstruction require either fast memory, fast IPC, more cores, or even OpenCL compute devices to hand. Agisoft supplied us with a special version of the software to script the process, where we take 50 images of a stately home and convert it into a medium quality model. This benchmark typically takes around 15-20 minutes on a high end PC on the CPU alone, with GPUs reducing the time.

Agisoft PhotoScan Benchmark - Total Time

The benefits of the eDRAM here afford nearly two minutes over the v3.

Cinebench R15

Cinebench is a benchmark based around Cinema 4D, and is fairly well known among enthusiasts for stressing the CPU for a provided workload. Results are given as a score, where higher is better.

Cinebench R15 - Single Threaded

3D Particle Movement: MultiThreaded

We've seen that Broadwell can organise threads slightly better than Haswell, along with its IPC increases and ability to manage more data in its buffers. As a result, while single thread is pretty much par for the course between the v3 and v4, the multithreaded result puts the v4 ahead of the v3.

HandBrake v0.9.9: link

For HandBrake, we take two videos (a 2h20 640x266 DVD rip and a 10min double UHD 3840x4320 animation short) and convert them to x264 format in an MP4 container.  Results are given in terms of the frames per second processed, and HandBrake uses as many threads as possible.

HandBrake v0.9.9 LQ Film

HandBrake v0.9.9 2x4K

With our HandBrake tests, historically low quality encodes with small frames require a purely faster processor, whereas large high quality frames need more memory accesses. This is why the E3 v3 at 84W and E3 v4 at 35W come out near similar - the eDRAM of the v4 helps push a little ahead here. That being said, the improvements in Skylake show what perhaps the future v5 Xeons might be capable of.

Hybrid x265

Hybrid is a new benchmark, where we take a 4K 1500 frame video and convert it into an x265 format without audio. Results are given in frames per second.

Hybrid x265, 4K Video

The Intel Broadwell Xeon E3 v4 Review: 95W, 65W and 35W with eDRAM Professional Performance: SPECviewperf 12 on a GTX 980
Comments Locked

72 Comments

View All Comments

  • Urizane - Wednesday, August 26, 2015 - link

    The R7 240 used on that page isn't exactly fast. Actually, the A10 APU has more graphics hardware than that card, which shows in the results. The fact that Crystal Well parts can beat an A10 APU means that they also beat the R7 240.

    As far as the 4770R comparison goes, it seems I'm coming up with nothing useful from a quick search. Anandtech has numbers for the 4770R and numbers for the 5675C, but in none of the same benchmarks. Iris Pro 5200 (4770R) had 40 EUs that could turbo to 1.3 GHz and Iris Pro P6300 (E3-1285* v4) has 48 EUs that can turbo to 1.15 GHz (same for 5775C and 1.1 GHz for 5675C). I would think it would be a wash (some wins, some losses) between the two generations, but you're right. There would be some utility in having some hard numbers to compare the two.
  • alefsin - Wednesday, August 26, 2015 - link

    I wish you also included e5-1630 v3 in your tests. It is slightly more expensive ($600 range I guess) but with 6 cores at 3.5 MHz is probably more attractive than the any of faster e3 series.
  • tyger11 - Wednesday, August 26, 2015 - link

    Yeah, that's the one I'm thinking about building my video workstation around, unless a 6 core skylake comes out soon.
  • Mastadon - Thursday, August 27, 2015 - link

    Skylake Xeons aren't due until 2017.
  • JesseKramer - Wednesday, August 26, 2015 - link

    According to Ark the e5-1630 v3 is a 4c8t part.

    http://ark.intel.com/products/82764/Intel-Xeon-Pro...
  • alefsin - Thursday, August 27, 2015 - link

    Oh, sorry, my bad. I meant E5-1650 V3. I recently built a workstation with that for CFD analysis. 140 W is bit high these days but then again, there is no argument about the performance.
  • Gigaplex - Wednesday, August 26, 2015 - link

    "but the main parallel we should be making is the 95W of the E3-1285 v4 and the E3-1276 v3 at 84W. The E3 has some extra frequency (peaks at 4 GHz) and extra L3 cache, but the Xeon has eDRAM."

    The E3 vs the Xeon? They're both E3 Xeons.
  • MrSpadge - Wednesday, August 26, 2015 - link

    "If I were thinking from the point of view of the motherboard manufacturer, they are more likely to overvolt a Xeon processor to ensure that stability rather than deal with any unstable platforms"

    Ian, this would be a really really poor move & explanation. You are literally paying Intel for the guaranteed stability of the Xeon. the CPU tells the mainboard exactly which voltage it wants. If a mainboard maker gives it more than this on purpose, he's sabotaging either the TDP and power efficiency, or the performance. Neither is good and could easily lead to lawsuits in the US (because the product wouldn't perform as promised).

    In any way, you should be able to check this! You can test on different boards, with different software. You can read out & report the voltages of the CPUs under different load conditions. You can log & report the average CPU clocks during those tests. One would think such information is interesting when we're seemingly confronted with 2 of 3 CPUs consuming far more than promised by Intel and performing really good for that TDP.
  • Morawka - Wednesday, August 26, 2015 - link

    i wish you guys would start putting the i7 4790K in these Skylake/Broadwell Comparisons because the clock speed is identical to the 6770K.

    Comparing the 6770K to the 4770K is not fair because clock speeds are different.
  • Oxford Guy - Wednesday, August 26, 2015 - link

    Anandtech refuses to include the AMD FX 8 core in its results charts and instead only includes weaker APUs.

Log in

Don't have an account? Sign up now