Typical branches have one of two options: either don’t take the branch, or go to the target instruction and begin executing code there:

A Typical Branch

...
Line 24: if (a = b)
Line 25:
execute this code;
Line 26: otherwise
Line 27: go to line 406;
...

Most branches have two options - don't take the branch or go to the target and start executing there

There is a third type of branch – called an indirect branch – that complicates predictions a bit more. Instead of telling the CPU where to go if the branch is taken, an indirect branch will tell the CPU to look at an address in a register/main memory that will contain the location of the instruction that the CPU should branch to. An indirect branch predictor, originally introduced in the Pentium M (Banias), has been included in Prescott to predict these types of branches.

An Indirect Branch

...
Line 113: if (z < 2)
Line 114: execute this code;
Line 115: otherwise
Line 116: go to memory location F and retreive the address of where to start executing

...

Conventionally, you predict an indirect branch somewhat haphazardly by telling the CPU to go to where most instructions of the program end up being located. It’s sort of like needing to ask your boss what he wants you to do, but instead of asking just walking into the computer lab because that’s where most of your work ends up being anyways. This method of indirect branch prediction ends up working well for a lot of cases, but not all. Prescott’s indirect branch predictor features algorithms to handle these cases, although the exact details of the algorithms are not publicly available. The fact that the Prescott team borrowed this idea from the Pentium M team is a further testament to the impressive amount of work that went into the Pentium M, and what continues to make it one of Intel’s best designed chips of all time.

Prescott’s indirect branch predictor is almost directly responsible for the 55% decrease in mispredicted branches in the 253.perlbmk SPEC CPU2000 test. Here’s what the test does:

253.perlbmk is a cut-down version of Perl v5.005_03, the popular scripting language. SPEC's version of Perl has had most of OS-specific features removed. In addition to the core Perl interpreter, several third-party modules are used: MD5 v1.7, MHonArc v2.3.3, IO-stringy v1.205, MailTools v1.11, TimeDate v1.08

The reference workload for 253.perlbmk consists of four scripts:

The primary component of the workload is the freeware email-to-HTML converter MHonArc. Email messages are generated from a set of random components and converted to HTML. In addition to MHonArc, which was lightly patched to avoid file I/O, this component also uses several standard modules from the CPAN (Comprehensive Perl Archive Network).

Another script (which also uses the mail generator for convienience) excercises a slightly-modified version of the 'specdiff' script, which is a part of the CPU2000 tool suite.

The third script finds perfect numbers using the standard iterative algorithm. Both native integers and the Math::BigInt module are used.
Finally, the fourth script tests only that the psuedo-random numbers are coming out in the expected order, and does not really contribute very much to the overall runtime.

The training workload is similar, but not identical, to the reference workload. The test workload consists of the non-system-specific parts of the acutal Perl 5.005_03 test harness.

In the case of the mail-based benchmarks, a line with salient characteristics (number of header lines, number of body lines, etc) is output for each message generated.

During processing, MD5 hashes of the contents of output "files" (in memory) are computed and output.

For the perfect number finder, the operating mode (BigInt or native) is output, along with intermediate progress and, of course, the perfect numbers.
Output for the random number check is simply every 1000th random number generated.

As you can see, the performance improvement is in a real-world algorithm. As is commonplace for microprocessor designers to do, Intel measured the effectiveness of Prescott’s branch prediction enhancements in SPEC and came up with an overall reduction in mispredicted branches of about 13%:

Percentage Reduction in Mispredicted Branches for Prescott over Northwood (higher is better)
164.gzip
1.94%
175.vpr
8.33%
176.gcc
17.65%
181.mcf
9.63%
186.crafty
4.17%
197.parser
17.92%
252.eon
11.36%
253.perlbmk
54.84%
254.gap
27.27%
255.vortex
-12.50%
256.bzip2
5.88%
300.twolf
6.82%
Overall
12.78%

The improvements seen above aren’t bad at all, however remember that this sort of a reduction is necessary in order to make up for the fact that we’re now dealing with a 55% longer pipeline with Prescott.

The areas that received the largest improvement (> 10% fewer mispredicted branches) were in 176.gcc, 197.parser, 252.eon, 253.perlbmk and 254.gap. The 176.gcc test is a compiler test, which the Pentium 4 has clearly lagged behind the Athlon 64 in. 197.parser is a word processing test, also an area where the Pentium 4 has done poorly in the past thanks to branch-happy integer code. 252.eon is a ray tracer, and we already know about 253.perlbmk; improvements in 254.gap could have positive ramifications for Prescott’s performance in HPC applications as it simulates performance in math intensive distributed data computation.

The benefit of improvements under the hood like the branch prediction algorithms we’ve discussed here is that they are taken advantage of on present-day software, with no recompiling and no patches. Keep this in mind when we investigate performance later on.

We’ll close this section off with another interesting fact – although Prescott features a lot of new improvements, there are other improvements included in Prescott that were only introduced in later revisions of the Northwood core. Not all Northwood cores are created equal, but all of the enhancements present in the first Hyper Threading enabled Northwoods are also featured in Prescott.

Prescott's New Crystal Ball: Branch Predictor Improvements An Impatient Prescott: Scheduler Improvements
Comments Locked

104 Comments

View All Comments

  • Jeff7181 - Thursday, March 11, 2004 - link

    #98

    Yes, increasing the drive current means increasing the current that's flowing through the transistors, which does explain the heat increase.

    watts = current x voltage

    If we do the math, we can figure out how many amps the current Prescott runs on...

    The 3.2 and 3.4 Ghz models have a spec of 103 watts, and the voltage is 1.385, so divide 103 by 1.385 and you get about 74.3 amps.

    The 3.4 Ghz Northwood has a spec of 89 watts, and the voltage is 1.550, that's 57.4 amps.

    That's a 30% increase in current, with only a 20% reduction in voltage. There's your extra heat. 103 watts vs. 89 watts... about a 16% increase in heat. We can take this a little further and say...

    The Prescott at 3.4 Ghz produces 103 watts of heat, max. The Prescott at 3.0 Ghz produces 89 watts of heat, max. That means a 3.4 GHz Prescott runs on 74.3 amps, and the 3.0 GHz Prescott runs on 64.3 amps. So increasing the speed by 400 Mhz requires 10 more amps.
    So a 3.6 GHz Prescott would run on 79.3 amps, which would create 109.8 watts...
    and a 3.8 GHz Prescott would run on 84.3 amps, which would create 116.8 watts...
    and a 4.0 GHz Prescott would run on 79.3 amps, which would create 123.7 watts...
    and a 5.0 GHz Prescott would run on 104.3 amps, which would create 144.5 watts.

    This is of course assuming they don't make core changes that require less current, and that they don't make core changes that require less voltage. It will be VERY interesting to see how they deal with this increased thermal output... considering it looks like the 2.8 Ghz Prescotts are maxing out at 50 degrees C with the retail heatsinks... and the thermal output of a 5 Ghz Prescott is about twice that, so, with the same heatsink as the 2.8... a 5 Ghz Prescott should run at about 100 degrees C, lol. 5 Ghz is a ways away though, 4 is much closer, but still, that's about a 75% increase in heat over the 2.8... so you're gonna be looking at full load temps around 80 degrees C unless Intel pulls something out of their hat.

    On a side note...

    Strained Silicon is supposed to reduce current leakage, and it does. But what I think Intel maybe didn't foresee is the 30% increase in current… or maybe they thought they could run on 1.0 – 1.2 volts.

    See, voltage is electrical pressure, current is electrical volume. If you increase the volume of electricity moving through, but decrease the pressure, not as much current will leak. Think of it like a water hose. If you need a certain amount of water in a certain amount of time, you can increase the water pressure, and it will move faster so you'll have more water, but you might spring a leak in the hose... or you can just get a bigger hose and use less water pressure, which is basically what Intel did with Strained Silicon.

    AMD’s approach with using SOI has been, dare I say, more successful. When you look at the specifications, the 3400+, 2.2 GHz has a maximum of 89 watts at 1.5 volts. When the PowerNow feature is used, it drops down to 2.0 GHz, and 1.4 volts, the wattage drops down to a cool 69 watts. When it drops down again to 1.8 GHz and 1.3 volts, the wattage drops to 50 watts. And finally when it drops down to 1.0 GHz and 1.1 volts, the wattage is a frigid 22 watts. Normally you would think that means for every 200 MHz increase, your wattage increases by 10 watts. However… the FX-53 runs at 2.4 GHz and it’s maximum wattage is also 89 watts. So it seems as though AMD may be estimating very high with these early processors if a 2.4 GHz chip has the same maximum heat dissipation of a 2.0 GHz chip. The only explanation I can come up with is that as they get more experience at manufacturing these chips, current leakage just gets better and better. We can only hope to see the same from Intel with the Prescott as they refine their Strained Silicon and 90nm process.
  • slashbinslashbash - Sunday, February 29, 2004 - link

    Oh, and I think that the conspicuous silence by AT and everybody else on this subject only confirms that Intel indeed has something up its sleeve. They all say "Prescott has higher energy consumption" and "a larger transistor count" without even speculating as to what could create the wild disparity that we see with the transistor math.
  • slashbinslashbash - Sunday, February 29, 2004 - link

    #96: I'm no CPU designer, but it seems to me that the "add transistors to dissapate heat more evenly" argument doesn't make sense. Why not just have empty silicon if you need to spread things out? Adding actual transistors will also increase the amount of heat output, so the density of heat would stay the same.

    Lots of good speculation on Prescott/Yamhill here: http://www.chip-architect.com/
  • Regs - Tuesday, February 17, 2004 - link

    Ah god, I'm sorry. This is suppose to be about the Prescott, and I just completely made a "fan boy" remark.
  • Regs - Tuesday, February 17, 2004 - link

    So it's pricey, runs hot, shows little improvement over the earlier northwoods, and did I mention pricey? The 3.4c is 415 dollars at newegg let alone what a 3.2 o 3.4E would cost.

    To us tech-gurus it comes down to common sense, but everybody knows marketing will always get the better of AMD. Intel well shovel "you're paying for the best performer", which is sadly true by a small margin if that for a huge price difference. And how people ignore the A64 completely just because 64-bit is not needed as of right now is just frustrating.

    AMD made a remarkable achievement for making affordable technology while satisfying the need for higher performance.
  • TrogdorJW - Wednesday, February 4, 2004 - link

    What does it mean to increase the transistor drive current by 10-20%? Does that mean that they need to run, say, 1.1 to 1.2 Amps instead of 1.0 Amps? (I know that's not what the processors use; I'm just using those numbers because they're easy to work with.) If that's correct, then it would certainly account for some of the heat increase.

    Initially, I read about strained silicon and thought that the idea was that it would take less power to run the chips at the same speed. The atoms are further apart, electrons flow more easily... doesn't that mean that strained silicon should make things run cooler? (I'll be honest - the electromagnetic physics course I had to take in college was *NOT* my favorite course. Talk about a HARD class....)
  • PrinceGaz - Wednesday, February 4, 2004 - link

    I think Intel's heat problems are in part down to the Strained-Silicon technology they've introduced with the 90nm process as much as anything else. If as it says it increases the transistor drive-current by 10-20% then thats 10-20% more power and therefore heat being generated by each transistor for a given voltage.

    AMD however has opted to go for SOI now and that reduces leakage-current (waste) from the transistors, which means less heat is generated by them.

    Intel is expected to introduce SOI with their 65nm process in 2005 and that should help reduce their heat problem a bit, and AMD will no doubt adopt Strained-Silicon around about the same time which will raise the amount of heat in their chips making them both about even again.

    The difference now is that Intel implemented the heat-increasing performance improvement first, while AMD implemented the heat-decreasing one first.
  • TrogdorJW - Wednesday, February 4, 2004 - link

    Aceshardware has some information on the transistors as well, on the bottom of page one of their review: http://www.aceshardware.com/read.jsp?id=60000315

    Of course, they also end up concluding the same things as me: the changes that Intel has really told us about don't seem like they should really be using up the 45 million added transistors. (A Northwood with 1 MB of L2 would be an 80 million transistor CPU.)

    Intel did make numerous small changes to the processor, so I guess that it is possible that they could have used up all of the extra transistors. Who knows?

    One other thing that isn't really being talked about anywhere is transistor density. In the past, shrinking the transistor size always ended up making chips run cooler. It appears that this may not be the case with 90nm processes and beyond. If Intel had stuck with a straight Northwood core and simply moved to 90nm, then the CPU die size would be something like half of what it currently is. So instead of 112 mm2, it would be 60 mm2 or something.

    With all of the heat being generated in such a small area, maybe they had to add transistors and size just to spread out the heat dissipation? It's a weird argument, but it *could* be true. When AMD releases 90nm chips and we see how hot they get, we'll probably gain more insight into this. If AMD's chips run slightly hotter, then 90nm will have marked a transition to a new set of problems in processor die shrinks.
  • Pumpkinierre - Wednesday, February 4, 2004 - link

    The only other explanation is that prescott is dual core. Really if the stages get smaller as the pipeline gets deeper then the transistor count should stay the same. So a dual core with double the cache should be 2xNorthwood= 110 million transistors- still 15 million unaccounted for and available for other things. Other people are saying that the 31 stage pipeline cant be right as the processor's power would be much weaker than the observed performance cf. equivalent (20 stage pipe) Northwood, despite the tweaks. It seems to perform well on the hyperthreaded enabled software and dual cpu may explain the slowness of the cache like duallies where one cpu has to keep tabs on the other. It also explains the heat for which a size reduction on a single core should augur less heat in contrast to Prescott's > 100 Watts.
  • Pumpkinierre - Tuesday, February 3, 2004 - link

    That's it. Prescott is already 64bit enabled. They have'nt bothered to switch them off as no intel mobo BIOS detects the 64bit extensions anyway. That's where the extra heat is coming from. I mean Northwood is ~130MM2 (55million transistors) and Prescott is close in size 112mm2 but 125million transistors - so approximately the same size but far greater transistor density so more heat. Even with the extra cache it should have been around 80 million and thus heat would have been at Northwood levels. The extra transistors still seem excessive for x86-64. So it might even be IA-64. Sckt 478 might not be pinned enough but 775 should do it. Here's my prediction then: ** 64bit WILL be available when Sckt LBGA 775 Prescott cpus come out in April with the new Grantsdale and Alderwood mobos **. And thats what is going on display in coupla of weeks time. How to check it, maybe write some assembler using X86-64 or IA-64 commands and see if they work.

Log in

Don't have an account? Sign up now